Abstract
Polylactic acid (PLA), pure magnesium powder, and calcium phosphate powder were used to form a three-phase degradable biomedical composite. The effects of various powder proportions in polylactic acid–Mg–Ca3(PO4)2 composites were analyzed through mechanical and biological tests, which revealed that both the tensile and impact strength of the composite increased. Additionally, ductility presented only after a small proportion of powder was added. Hardness slightly increased because of dispersion strengthening. Furthermore, the addition of pure magnesium and calcium phosphate accelerated the degradation rate, and biocompatible salts were generated after degradation, which can improve healing and renewal in bone tissue. None of the composites exhibited cytotoxicity, meeting biological safety requirements. Overall, PLA10M10C (10 wt.% Mg, 10 wt.% Ca3(PO4)2) exhibited superior performance. Accordingly, PLA10M10C can serve as a reference for degradable biomedical material applications in orthopedic implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.