Abstract

Amorphous carbon is a promising functional film material to enhance the surface properties of Ti-based alloys for orthopaedic applications. However, high adhesion of the amorphous carbon film on the orthopaedic implants is essential to fully exploit its potential under high load bearings. Interlayer films are generally employed to improve the adhesion. The applied bias voltage is a decisive deposition parameter and significantly influences the structure and mechanical properties during the interlayer growth, which in turn affect the properties of the amorphous carbon film. Therefore, chemically graded titanium carbide (TixCy) interlayers were deposited using bias voltages of −50, −100, and −150 V with a subsequent hydrogen-free amorphous carbon (a-C) top layer on Ti6Al4V by magnetron sputtering. The mechanical properties and adhesion behavior of single TixCy interlayers were evaluated to analyze the interaction effect of TixCy on bilayered TixCy/a-C structures.A high bias voltage generates dense TixCy of a more disordered and defected structure with high stresses, high hardness of ~16 GPa, and high elastic modulus of ~170 GPa. However, high compressive stresses provoke a low adhesion strength, while low compressive stresses ensure a good adhesion behavior of TixCy. Highly stressed TixCy interlayers lead to overall higher stresses for the entire TixCy/a-C film. Independently of TixCy, the a-C top layer exhibits hardness and elastic modulus values of ~16 and ~160 GPa, respectively. The TixCy/a-C films with TixCy interlayers deposited at high bias voltages possess a low adhesion strength, while a lower bias voltage favors a good adhesion of TixCy/a-C on Ti6Al4V. Therefore, a moderate bias voltage is crucial to deposit lowly stressed TixCy interlayers, which ensure a high adhesion of TixCy/a-C on Ti6Al4V. Consequently, the bias voltage allows controlling the mechanical properties and adhesion behavior of the interlayer and, hence, the adhesion strength of the entire amorphous carbon film structure on Ti-based alloys for orthopaedic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.