Abstract

Metal matrix composites reinforced with discontinuous reinforcement (short fiber, whisker or particle) are attractive for applications requiring higher stiffness and strength than traditional alloys. Unlike continuously reinforced composites, where the properties are mainly influenced by fibers, the properties of the discontinuously reinforced composites seem to be influenced more by matrix properties. Most of the discontinuously reinforced composites are based on age-hardenable light alloys, so that aging treatments can be applied to develop the optimum properties of the composites. The aging behavior of discontinuously reinforced composites has been a subject of great interest both from scientific and technological view points. Recently developed NZ30K (Mg-3wt.%Nd-0.5wt.%Zn-0.5wt.%Zr) alloys exhibit higher specific strength at both room and elevated temperatures, better strength and creep resistance than the existing commercial magnesium alloys. Accordingly, this alloy can be considered as a candidate material for potential automobile applications, such as engine blocks and pistons, which experience high service temperature. Its use could save considerable mass weight in powertrain systems. However, low elastic modulus and wear resistance of magnesium alloys limit their widespread applications. Metal matrix composites have been proposed as the feasible and economical solution. The aim of this study is to investigate the effect of alumina fibers on the aging hardening kinetics and age-hardening efficiency of squeeze cast NZ30K/Saffil/15p magnesium matrix composite. The aging behavior has been examined using Vickers, combined with microstructure observation developed during heat treatment by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call