Abstract

Hypertension can impair structure and function of blood vessels. Experimental data describing the reverse remodeling process after a mechanical pressure unloading therapy in the vasculature is limited. We studied the influence of pressure unloading on both the structural and functional alterations of the aorta in a hypertensive rat model. Using isolated thoracic aortic rings in an in-vitro organ bath system, endothelium-dependent and endothelium-independent vasorelaxation were studied 6-weeks or 12-weeks after abdominal aortic banding (aortic banding-6-week or aortic banding-12-week), and 6-weeks after an aortic debanding procedure performed after the sixth experimental week of aortic banding (aortic banding + debanding-12-week). Age-matched rats were sham-operated (sham-6-week or sham-12-week). The aortic morphometry and histological fibrosis were studied, and the mRNA-expression of metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2, and soluble guanylate cyclase subunits GUCY1a3 and GUCY1b3 were determined. Aortic banding significantly increased systolic, diastolic, and pulse pressures. Structural changes (increased intima-media thickness and area normalized to body weight, aortic collagen content, higher MMP-2 and TIMP-2, and lower GUCY1a3 and GUCY1b3 mRNA-levels) and functional alterations (impaired endothelium-dependent and endothelium-independent vasorelaxation) have already taken place after 6 weeks of aortic banding. Pressure unloading, after established vascular changes, improved vascular function, resulted in reduced collagen content, and decreased both MMP-2 and TIMP-2 mRNA-expression. Pressure-overload-induced vascular changes regressed due to mechanical unloading. Furthermore, debanding leads to a reductive tendency in fibrosis-associated gene expression and collagen accumulation. Collectively, the addition of drugs that target fibrosis to existing hypertensive treatment may present an attractive therapy against vascular remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.