Abstract

BackgroundMechanical power (MP), defined as the amount of energy produced by mechanical ventilation and released into the respiratory system, was reportedly a determining factor in the pathogenesis of ventilator-induced lung injury. However, previous studies suggest that the effects of MP were proportional to their involvement in the total lung function size. Therefore, MP normalized to the predicted body weight (norMP) should outperform the absolute MP value. The objective of this research is to determine the connection between norMP and mortality in critically ill patients who have been on invasive ventilation for at least 48 h.MethodsThis is a study of data stored in the databases of the MIMIC–III, which contains data of critically ill patients for over 50,000. The study involved critically ill patients who had been on invasive ventilation for at least 48 h. norMP was the relevant exposure. The major endpoint was ICU mortality, the secondary endpoints were 30-day, 90-day mortality; ICU length of stay, the number of ventilator-free days at day 28.ResultThe study involved a total of 1301 critically ill patients. This study revealed that norMP was correlated with ICU mortality [OR per quartile increase 1.33 (95% CI 1.16–1.52), p < 0.001]. Similarly, norMP was correlated with ventilator-free days at day 28, ICU length of stay. In the subgroup analysis, high norMP was associated with ICU mortality whether low or high Vt (OR 1.31, 95% CI 1.09–1.57, p = 0.004; OR 1.32, 95% CI 1.08–1.62, p = 0.008, respectively). But high norMP was associated with ICU mortality only in low PIP (OR 1.18, 95% CI 1.01–1.38, p = 0.034).ConclusionOur findings indicate that higher norMP is independently linked with elevated ICU mortality and various other clinical findings in critically ill patients with a minimum of 48 h of invasive ventilation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.