Abstract

Walking humans prefer to use the stride rate that results in the lowest rate of metabolic energy expenditure. Mechanical power requirements have been suggested to underlie the metabolic response, but mechanical power is consistently reported to be minimal at stride rates 20-30% lower than preferred. This may be due to limitations in how total mechanical power has been computed, as well as a failure to account for the efficiency with which muscular work is done. We investigated how mechanical power and efficiency depend on stride rate in walking, with both quantities computed from the work done by the hip, knee and ankle joint moments. Our hypotheses were that mechanical power and efficiency are both optimized at the preferred stride rate, which would explain why metabolic energy expenditure is minimized at this rate. Contrary to our hypotheses, mechanical power curves exhibited plateaus that spanned stride rates lower than preferred (predicted optima: 11-12% below preferred), while net mechanical efficiency exhibited a plateau that spanned stride rates higher than preferred (predicted optimum: 8% above preferred). As expected, preferred stride rate (54.3 strides min(-1)) was not different from the stride rate that minimized net metabolic energy expenditure (predicted optimum: 0.2% above preferred). Given that mechanical power and mechanical efficiency exhibited plateaus on opposite sides of the preferred stride rate, the preferred rate in walking likely represents a compromise between these two factors. This may also explain the relative flatness of the curve for metabolic rate in the vicinity of the preferred stride rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.