Abstract

AbstractIn this paper, the mechanical behavior of reinforced concrete beams strengthened in shear with SRG (Steel Reinforced Grout) jackets is analyzed. An experimental investigation is carried out on 7 reinforced concrete beams strengthened in shear by U-shaped SRG (Steel Reinforced Grout) strips. The varied parameters were: the strengthening configuration (continuous and discontinuous), the distance between U-shaped strips and, the number of SRG layers.To predict the shear capacity of SRG shear strengthened reinforced concrete beams, an analytical model found based on the Ritter–Morsch criteria failure was proposed. The model was developed through a best fit analysis of experimental results available in the literature collected in a database.A numerical model based on a Finite Element procedure developed through Abaqus CAE 6.12 was also proposed. The procedure based on a macro-model approach, allowed to analyze the non-linear structural behavior of the SRG strengthened reinforced concrete beams. A cohesive model and a bi-linear local bond-slip law were adopted in the model to simulate the behavior at the SRG-to-concrete interface.Predictions of the analytical and numerical models were compared with experimental results obtained by the above-mentioned tests.KeywordsSRGShear strengtheningReinforced concreteBeams

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.