Abstract

Sustainability and energy efficiency of additive manufacturing (AM) is an up-to-date industrial request. Likewise, the claim for 3D-printed parts with capable mechanical strength remains robust, especially for polymers that are considered high-performance ones, such as polycarbonates in material extrusion (MEX). This paper explains the impact of seven generic control parameters (raster deposition angle; orientation angle; layer thickness; infill density; nozzle temperature; bed temperature; and printing speed) on the energy consumption and compressive performance of PC in MEX AM. To meet this goal, a three-level L27 Taguchi experimental design was exploited. Each experimental run included five replicas (compressive specimens after the ASTM D695-02a standard), summating 135 experiments. The printing time and the power consumption were stopwatch-derived, whereas the compressive metrics were obtained by compressive tests. Layer thickness and infill density were ranked the first and second most significant factors in energy consumption. Additionally, the infill density and the orientation angle were proved as the most influential factors on the compressive strength. Lastly, quadratic regression model (QRM) equations for each response metric versus the seven control parameters were determined and evaluated. Hereby, the optimum compromise between energy efficiency and compressive strength is attainable, a tool holding excessive scientific and engineering worth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.