Abstract
A new design for thermoplastic composites based on the gradation of the interlaminar interface strength (IGIS) has been developed with the aim of coupling high impact resistance with high static properties. IGIS laminates have been prepared by properly alternating layers of woven fabric with layers of compatibilized or not compatibilized polymeric films. To prove the new concept, polypropylene (PP) and glass fibres woven fabrics have been used to prepare composites by using the film stacking technique. Maleated PP, able to compatibilize polypropylene with glass fibres, has been used to manage the interface strength layer by layer.The flexural and low-velocity impact characterizations have shown that the presence of the coupling agent in conventional composite structures (prepared with fully compatibilized polymeric layers) improves the static flexural properties through the strengthening of the matrix/fibre interface but considerably lowers the low velocity impact resistance of the composite, in terms of maximum load before fibre breakage and recovered energy after impact. The use of the IGIS design, that grade the interface strength through the laminate thickness, allows to prepare composites with both high flexural properties and high impact resistance, without affecting the balance and type of the reinforcement configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Composites Part B: Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.