Abstract

A newly designed spinal implant was tested to evaluate multicycle stiffness and fatigue resistance. To investigate the effect of different materials, connecting plate, and pedicle screw design on the mechanical performance of the spinal implant. The addition of cross-linkages did not significantly increase implant compression/flexion stiffness, but accelerated fatigue failure at the rod junctions. Both Ti-6Al-4V spinal implants and the 316L stainless-steel counterparts have been used extensively for clinical cases; however, design factors establishing the proposed superiority of the Ti-6Al-4V implant for fatigue resistance have not, as yet, been extensively studied. Twenty implants with connecting plates (two materials by two screw designs by five implants) and five implants without connecting plates were assembled to UHMWPE blocks and cyclically loaded from 60 N to 600 N at a frequency of 5 Hz. Failure sites for the tested prototypes were at the cephalic screw hubs or rod-plate junctions. All Ti-6Al-4V implants demonstrated reduced stiffness compared to the structurally identical 316L analogs. The use of connecting plates raised the stiffness of the 316L prototypes without cross-links. However, elimination of the connecting plate avoided stress concentration at the rod/plate junctions and increased fatigue life. The Ti-6Al-4V new system with the minimal notch effect at the screw hubs achieved greater fatigue resistance than its 316L counterpart. By contrast, enlargement of the inner-hub diameter resulted in greater gains for fatigue resistance than for stiffness, especially for Ti-6Al-4V variants. Although Ti-6Al-4V was superior to 316L for endurance-limit properties, structural design of the Ti-6Al-4V implant dramatically affects fatigue resistance. This may explain the differences between existing studies and the current report, comparing fatigue life for implants made from these two materials. Our results reveal that Ti-6Al-4V must be carefully treated because of sensitivity to notch, with special consideration given to screw-hub design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.