Abstract

In this paper, the mechanical properties of nano-silica modified insulating paper under the combined action of mechanical vibration and temperature conditions are studied. Unmodified and nano-silica modified cellulose insulating paper with 2 wt% and 4 wt% were prepared, respectively, and a series of mechanical-thermal synergy experiments were carried out. With the same mechanical stress and temperature, and with the same aging duration of 144 h (6d), the tensile strength of modified insulating paper with 4 wt% nano-silica, increased 0.99 kN/m and 0.55 kN/m, respectively, compared with those of the unmodified and the 2 wt% nano-silica modified insulating paper. The experiments indicate that the nano-silica modification can effectively improve the mechanical properties of insulating paper. In this work, the modified mechanism of nano-silica is analyzed from the interface effect of modified polymer and the quantum effect of the modified polymer interface two aspects. It is shown that the interface formed in the modified insulating paper can transfer the mechanical stress acted on the insulating paper and prevent the cracks formed in the aging process of the test sample from further expansion, while the quantum effect discretizes the electron energy level, which can restrict the motion of the molecular chain segment to some extent. The conclusion can be used for reference to improve the performance of insulating paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.