Abstract

Abstract Experimental studies have been performed on ceramic matrix composite (CMC) I-sections, which typify joint designs for CMC components. Axial loads and moments have been applied to activate delamination mechanisms. The maximum load bearing capacity has large variability, governed by the severity of manufacturing flaws located in the transition region of the I-section. This variability leads to an unsatisfactory design situation. Delaminations that form from these flaws arrest and behave in a stable manner, subject to a remanent load bearing capacity. This remanent capacity has minimal variability. Hence, design based on the remanent load would be robust. An expression for this design criterion is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.