Abstract

Calcium carbonate binders were prepared via carbonating the paste specimens cast with steel slag alone or the steel slag blends incorporating 20% of Portland cement (PC) under CO2 curing (0.1MPa gas pressure) for up to 14d. The carbonate products, mechanical strengths, and microstructures were quantitatively investigated. Results showed that, after accelerated carbonation, the compressive strengths of both steel slag pastes and slag-PC pastes were increased remarkably, being 44.1 and 72.0MPa respectively after 14d of CO2 curing. The longer carbonation duration, the greater quantity of calcium carbonates formed and hence the higher compressive strength gained. The mechanical strength augments were mainly attributed to the formation of calcium carbonate, which caused microstructure densification associated with reducing pore size and pore volume in the carbonated pastes. In addition, the aggregated calcium carbonates exhibited good micromechanical properties with a mean nanoindentation modulus of 38.9GPa and a mean hardness of 1.79GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call