Abstract
In most mechatronics applications, the best control performance cannot be obtained by only shaping a control input signal because, in practice, such control is effective within only the performance range realizable by the actuator and control system. Therefore, to obtain the best control performance, the mechanical parameters should be optimally selected such that the desired control performance can be achieved with minimal control effort. However, it is difficult to accurately predict the control performance without conducting an actual experiment because the control performance is dependent on not only the mechanical design parameters, but also on various practical factors, such as the input and output saturation of the actuator, the heat problem, and sensor limitations. For these reasons, a recursive mechanical parameter tuning process based on control experiments is proposed in this paper. Based on a set of control signals (e.g., a control input and a tracking error), the proposed mechanical parameter tuning method seeks a better mechanical design parameter for improving the control performance (i.e., to reduce the control input power). For verification of the proposed method, the method was applied to case studies including simulations and experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.