Abstract
We report the simultaneous investigation of both the plasmonic resonance and electrical conductance evolution in stretchable metal–polymer nanocomposite films. The films are produced by the implantation of neutral gold nanoparticles in a polydimethylsiloxane substrate by aerodynamic acceleration in a supersonic expansion. A redshift of the gold nanoparticle plasmon peak is found upon stretching as well as a strong correlation between the plasmonic peak wavelength and the nanocomposite electrical resistance. Optical simulations attribute the optical response to the compression of the polymer perpendicular to the stretching direction, which brings the gold particles closer to each other, increasing the plasmonic coupling. Mechanical stretching can induce a simultaneous modulation of the optical and electrical properties of the nanocomposite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.