Abstract
Despite their brittleness, silicate glasses undergo plastic deformation at the microscopic scale. Mechanical contact and indentation are the most common situations of interest. The plasticity of glasses is characterized not only by shear flow but also by a permanent densification process. After indentation, densification can locally reach 20% in a pure silica glass. In this paper, a new constitutive model, derived from experimental observations, is presented to account for the plasticity of fused silica. The use of nanoindentation tests to identify the plastic behaviour of amorphous silica is discussed. A set of material properties is determined by comparing experimental load–displacement indentation curves to the results of finite element simulations. The numerical results show good agreement with recent experimental indentation-induced densification maps obtained by Perriot et al. [Perriot A, Vandembroucq D, Barthel E, Martinez V, Grosvalet L, Martinet Ch, et al. J Am Ceram Soc 2006;89:596].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.