Abstract

Abstract A constitutive equation of creep, swelling and damage under irradiation for polycrystalline metals applicable to structural analyses in multiaxial state of stress is developed. After reviewing microscopic mechanisms of irradiation creep and swelling, the relevant theories proposed so far from the view point of metallurgical physics and their applicability are discussed first. Then a constitutive model is developed by assuming that creep under irradiation can be decomposed into irradiation-affected thermal creep and irradiation-induced creep. By taking account of the Stress-Induced Preferential Absorption (SIPA) mechanism, the irradiation-induced creep is represented by an isotropic tensor function of order one and zero with respect to stress, which is, at the same time, the function of neutron flux and neutron fluence. The volumetric part of the irradiation-induced creep is identified with swelling. The irradiation-affected thermal creep is described by modifying Kachanov-Rabotnov theory for stress-controlled creep and creep damage by incorporating the effect of irradiation. Finally irradiation creep and swelling of 20% cold-worked type 316 stainless steel at elevated temperature are predicted by the proposed constitutive equations, and the numerical results are compared with the corresponding experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.