Abstract

A three dimensional mechanical model has been recently developed to simulate the Near Surface Mounted (NSM) Fibre Reinforced Polymer (FRP) strips shear strength contribution to Reinforced Concrete (RC) beams throughout the entire loading process, as function of the Critical Diagonal Crack (CDC) opening angle. It was developed by fulfilling equilibrium, kinematic compatibility and constitutive laws of both intervening materials and bond between them. It takes into consideration all of possible failure modes that can affect the behaviour, at ultimate, of a single NSM strip, namely: loss of bond (debonding), semi-conical concrete tensile fracture, rupture of the strip itself and a mixed shallow-semi-cone-plus-debonding failure. Besides, it allows the interaction among adjacent strips to be accounted for. The numerical results, in terms of both shear strength contribution and predicted cracking scenario are presented and compared with experimental evidence regarding some of the most recent experimental programs. From that comparison, a satisfactory level of prediction accuracy, regardless of the main parameters such as concrete mechanical properties, amount and inclination of strips, arises. The main findings, as well as the influence of some of the main intervening parameters, are shown.KeywordsShear StrengthReinforce ConcreteFibre Reinforce PolymerReinforce Concrete BeamFibre Reinforce Polymer CompositeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.