Abstract

Abstract The molecular mechanisms responsible for the deformation of wood, as well as the mechanical interaction of cell-wall components, such as cellulose, lignin and hemicelluloses, are not well understood. In a recently published experiment [1], we have shown that wood foils and single cells of compression wood of spruce (Picea abies [L.] Karst.) could deform permanently under tensile load via a stick and slip mechanism at the molecular level occurring during shear of the matrix between cellulose microfibrils. The shear originates from the fact that microfibrils are spiralling around the central lumen of the wood cell which can be considered as a hollow tube. During stretching, the microfibril angle between the cell axis and the direction of the cellulose was found to decrease in synchrotron X-ray diffraction experiments, giving rise to shear deformation of the matrix and to a recovery mechanism after irreversible deformation. The corresponding stick and slip mechanism is treated here in the framework ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.