Abstract

To accurately predict the trajectory and attitude of the projectile obliquely penetrating the laminated aluminum foam target, the penetration resistance function which conclude normal stress, shear stress and friction is established in this paper. Then, we establish the differential equation of the projectile motion combined with the momentum theorem and the momentum moment theorem. Finally, we use finite element software Ansys/Ls-Dyna to simulate the oblique penetration, and the attitude deflection under different initial velocity or different initial attitude angle is emphatically analyzed. The results show that there is a peak of attitude deflection at the beginning of oblique penetration, and the peak is little correlated with initial velocity, but is positively correlated with initial attitude angle. The projectile will deflect three times during oblique penetration, and the variation is “increase-decrease-increase”. When the projectile finally through the target, the value of attitude deflection is negatively correlated with initial velocity and positively correlated with initial attitude angle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call