Abstract

In this work, mechanical milling of magnesium with SiC particles with variation of parameters, such as ball-to-powder ratio, milling speed, milling time, and process controlling agent (PCA), is reported. Milling was also conducted without using PCA to explore its role on the mechanical milling process. Milling was performed in a planetary ball mill. The results show that a uniform distribution of the reinforcement, good particle yield, and particle size reduction can be achieved by controlling the parameters. The milling powders were compacted using the underwater shock wave generated by the detonation of an explosive. The samples were characterized by XRD, scanning electron microscopy, and microhardness testing. Microstructural characterization revealed a well flown magnesium matrix enveloping reasonably well dispersed SiC particles. The results of microhardness testing reveal an increase in the hardness of the composite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.