Abstract

The increasing needs for new types of computing lie in the requirements in harsh environments. In this study, the successful development of a non-electrical neural network is presented that functions based on mechanical computing. By overcoming the challenges of low mechanical signal transmission efficiency and intricate layout design methodologies, a mechanical neural network based on bistable kirigami-based mechanical metamaterials have designed. In preliminary tests, the system exhibits high reliability in recognizing handwritten digits and proves operable in low-temperature environments. This work paves the way for a new, alternative computing system with broad applications in areas where electricity is not accessible. By integrating with the traditional electronic computers, the present system lays the foundation for a more diversified form of computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.