Abstract

Diffuse axonal injury (DAI), a major component of traumatic brain injury, is characterized by a sequence of neurochemical reactions initiated at the time of trauma and resulting in axonal degeneration and cell death. Calcium influx through mechanically induced axolemmal pores and subsequent activation of calpains are thought to be responsible for the cytoskeletal damage leading to impaired axonal transport. Focal disruption of cytoskeleton accompanied by the accumulation of transported membranous cargo leads to axonal beading which is the characteristic morphology of DAI. By applying fluid shear stress injury on cultured primary neurons, acute calcium (Ca 2+) and calpain responses of axons to mechanical trauma were investigated. Intracellular Ca 2+ concentration ([Ca 2+] i) shows a steady increase following injury that can be blocked by sealing membrane pores with Poloxamer 188 and by chelating intra- or extracellular Ca 2+. Calpain activity increases in response to mechanical injury and this increase depends on Ca 2+ availability and on axolemmal permeability. Both the [Ca 2+] i increase and calpain activity exhibit focal peaks along the axons which co-localize with mitochondria and predict future axonal bead locations. These findings suggest that mechanoporation may be the initiating mechanism resulting in ensuing calcium fluxes and subsequent calpain activity and that post-injury membrane repair may be a valid therapeutic approach for acute intervention in DAI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.