Abstract

The weak interlayer, as a problematic geological body during tunnel construction, greatly influences the propagation of the blasting stress wave, the blasting excavation qualities, and the explosion efficiency. A series of numerical models were established to study the changes in the propagation process of blasting stress waves and the failure morphology of the surrounding rock mass, aiming to reveal the weak interlayer’s influence mechanism. The result indicates that the weak interlayer’s existence reduces the propagation velocity and stress peak of the stress wave at barred zones but strengthens the peak stress at reflection zones, which leads to an asymmetrical distribution of rock damage. Furthermore, the type and distribution of the weak interlayer were classified and generalized into four types. The tunnel blasting outlines under different types of weak interlayers are derived through numerical modeling for designing references. A strategy to resist tunnel overbreak and underbreak was proposed combined with previous work. The actual blasting solution is compared to the designed blasting solution with optimised blasting parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call