Abstract

Mechanical metamaterials exhibit remarkable design versatility, enabling a series of unconventional mechanical properties via structural modifications. However, it is worth noting that many existing mechanical metamaterials either possess a singular deformation path or only multi-step deformation paths without reusability. This study proposes a novel multi-step deformation metamaterial that possesses multiple stable configurations. This metamaterial produces a unique two-step deformation mode under displacement loading, where the curved beams of the unit cells undergo snap-through and the vertical beams buckling. The influence of geometrical parameters on the multistability of the structure is thoroughly examined, and a theoretical prediction model for the buckling load is formulated. To validate the accuracy of the model, experimental tests and finite element simulations are conducted on the two-step deformation mode of periodic array of the unit cell. Additionally, a bi-material design approach for the unit cell is further introduced to enhance the specific energy absorption of the structure while reinforce the negative stiffness effect. Leveraging the multistable characteristics of the structure, mechanical logic gates such as AND, OR, NOT and NAND are conceptualized and experimentally validated. Through the implementation of rational designs and combinatorial connections within the logic gate structure, more complex logic operations can be realized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.