Abstract
Mechanical loading of finger bones (phalanges) can induce angular curvature, which benefits arboreal primates by dissipating forces and economising the recruitment of muscles during climbing. The recent discovery of extremely curved phalanges in a hominin, Homo naledi, is puzzling, for it suggests life in an arboreal milieu, or, alternatively, habitual climbing on vertical rock surfaces. The importance of climbing rock walls is attested by several populations of baboons, one of which uses a 7-m vertical surface to enter and exit Dronkvlei Cave, De Hoop Nature Reserve, South Africa. This rock surface is an attractive model for estimating the probability of extreme mechanical loading on the phalanges of rock-climbing primates. Here we use three-dimensional photogrammetry to show that 82–91% of the climbable surface would generate high forces on the flexor tendon pulley system and severely load the phalanges of baboons and H. naledi. If such proportions are representative of vertical rock surfaces elsewhere, it may be sufficient to induce stress-mitigating curvature in the phalanges of primates.Significance: We present the first three-dimensional photogrammetric analysis of a vertical rock surface climbed by a non-human primate, the chacma baboon (Papio ursinus). Our results show that a large proportion of a vertical rock wall would compel crimp and slope hand positions during climbing – grips that could explain the extraordinary phalangeal curvature expressed by a Middle Pleistocene hominin, Homo naledi.
Highlights
Bone is a dynamic tissue, and repeated mechanical loading can induce changes to its density and angular curvature
Our results show that a large proportion of a vertical rock wall would compel crimp and slope hand positions during climbing – grips that could explain the extraordinary phalangeal curvature expressed by a Middle Pleistocene hominin, Homo naledi
Phalangeal curvature is widely viewed as a measure of arboreality among primates – it is a classic form-functional trait that informs our interpretations of behaviour and ecology in the fossil record[1,2,3,4,5,6,7]
Summary
Bone is a dynamic tissue, and repeated mechanical loading can induce changes to its density and angular curvature. Our results show that a large proportion of a vertical rock wall would compel crimp and slope hand positions during climbing – grips that could explain the extraordinary phalangeal curvature expressed by a Middle Pleistocene hominin, Homo naledi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.