Abstract
Cementitious materials can be reinforced by adding different fibers. However, the effect of different fiber reinforcements on the mechanical properties of cement-based materials remains to be further studied. This paper studies the influencing factors of different fiber cement-based materials by combining experimental and theoretical methods. The tests used carbon fiber, glass fiber, and polyvinyl alcohol (PVA) fiber-reinforced cement-based materials. The addition ratios of fibers are 0%, 0.5%, and 1% by volume respectively. The compressive strength, bending strength, and drying shrinkage are studied for 3 to 28 d. The relationship between bending strength, compressive strength, dosage, and shrinkage is analyzed. The test results show that carbon fiber cement-based materials’ bending, and compressive strength increase the fastest, followed by glass and PVA fibers. The presented mathematical model accurately predicted the strength of the three fiber cement-based materials at different curing times. Compared to glass fiber and PVA fiber, carbon fiber shrinks less. It can be shown that the fiber significantly affects the early strength change of the fiber cement-based material by changing the shrinkage size of the fiber-cement-based material. The bending strength of carbon fiber, glass fiber, and PVA fiber increases with the increase of fiber volume fraction. On the other hand, the compressive strength increases and then decreases. Mechanical tests show that carbon fiber has the best reinforcement effect. The number of fibers, center spacing, and ultimate tensile length are all important factors that affect the strength of different fiber cement-based materials. Moreover, applied ABAQUS software established compression and bending finite element models of fiber-cement composites. It can predict the mechanical performance concerning fiber cement-based materials’ different types and volume fractions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.