Abstract
This paper assesses the ability of the Equivalent Inclusion Method (EIM) with third order truncated Taylor series (Moschovidis and Mura, 1975) to describe the stress distributions of interacting inhomogeneities. The cases considered are two identical spherical voids and glass or rubber inhomogeneities in an infinite elastic matrix. Results are compared with those obtained using spherical dipolar coordinates, which are assumed to be exact, and by a Finite Element Analysis. The EIM gives better results for voids than for inhomogeneities stiffer than the matrix. In the case of rubber inhomogeneities, while the EIM gives accurate values of the hydrostatic pressure inside the rubber, the stress concentrations are inaccurate at very small neighbouring distances for all stiffnesses. A parameter based on the residual stress discontinuity at the interface is proposed to evaluate the quality of the solution given by the EIM. Finally, for inhomogeneities stiffer than the matrix, the method is found to diverge for expansions in Taylor series truncated at the third order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.