Abstract

AbstractThe interaction between structural reinforcement and the surrounding concrete matrix in tension is a governing mechanism in the structural response of reinforced concrete members. The tension stiffening process, defined as the concrete´s contribution to tensile response of the composite, has been investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus was on the deformation process and transverse crack formation in the cementitious matrix at increasing tensile strain.KeywordsCrack WidthGlass Fiber Reinforce PolyEngineer Cementitious CompositeReinforced Concrete MemberTension StiffeningThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.