Abstract

Abstract In previous research on the mechanical instability of trees based on mechanical theory, wild tree has been modeled as a cantilever which was perfectly attached to the ground. However, experimental research has identified two failure modes, including root turnover and self-buckling of the trunk. This suggests that the imperfect fixation caused by root-soil interaction must be considered when discussing tree stability. The purpose of this study is to clarify the self-buckling characteristics of wild trees considering soil instability. To account for the resistance moment caused by the interaction between the root and soil, trees as cantilevers fixed to the ground by a rotational spring were modeled. In this model, the self-buckling problem was formulated considering the rotational rigidity of the spring, and the formula derived for the critical height and buckling mode. As a result, the formula for critical height considering rotational rigidity was obtained, and it was found that the buckling modes can be classified into the rigid-body mode and beam mode based on the rotational rigidity. By comparing this result with the statistical law based on the measurement of real trees reported in previous research, it was determined that real trees were designed based on beam mode. This suggests that the wild tree skillfully balances the moment of resistance caused by the interaction between the root and soil to prevent “uprooting,” which is extremely fatal for trees. Moreover, it was also found that the safety factor of trees for self-buckling is ensured enough to prevent the beam mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.