Abstract

We have carried out a systematic study of buckling-like mechanical instabilities in simple two- (2D) and three-dimensional (3D) symmetric foam clusters sandwiched between parallel planar walls. These instabilities occur when the wall separation w is reduced below a critical value, w*, for which the foam surface energy E reaches its minimum, E*. The clusters under investigation consist of either a single bubble, or of "twin bubbles" of fixed equal sizes (areas A in 2D or volumes V in 3D), which are either free to slide or pinned at the confining walls. We have numerically obtained w* for both free and pinned 2D and 3D clusters. Furthermore, we have calculated the buckled configurations of 2D twin bubbles, either free or pinned, and of 3D free twin bubbles, whose energy is independent of w and equal to the minimum energy E* of the unbuckled state. Finally, we have also predicted the critical w(t)* at which the terminal configurations under extension of 2D and 3D single and twin bubbles are realised. Experimental illustrations of these transitions under compression and extension are presented. Our results, together with others from the literature, suggest that a bubble cluster bounded by two parallel walls is stable only if the normal force it exerts on the walls is attractive, i.e., if dE/dw > 0; clusters that cause repulsion between the walls are unstable. We correlate this with the distribution of film orientations: films in a stable cluster cannot be "too parallel" to the confining walls; rather, their average tilt must be larger than for a random distribution of film orientations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.