Abstract

BackgroundPatients with idiopathic pulmonary fibrosis (IPF) frequently develop a dry, irritating cough which often proves refractory to anti-tussive therapies. The precise pathogenetic mechanisms responsible for this cough are unknown. We hypothesised that changes in nerves modulating mechanical sensitivity in areas of interstitial fibrosis might lead to enhanced cough response to mechanical stimulation of the chest in IPF.MethodsWe studied 27 non-smoking subjects with IPF (63% male), mean (SD) age 71.7 (7) years and 30 healthy non-smokers. Quality of life (Leicester Cough Questionnaire), cough symptom scores and cough severity scores (visual analog scales) were recorded. Percussion stimulation was applied over the posterior lung base, upper anterior chest and manubrium sternum at sequential frequencies (20 Hertz (Hz), 40 Hz and 60 Hz) for up to 60 seconds and repeated twice at two minute intervals. The number of subjects achieving two and five-cough responses, total cough counts and cough latency were recorded. In separate experiments, the effect of mechanical stimulation on the pattern of breathing was determined in eight IPF subjects and five control subjects.ResultsIn patients with IPF, we demonstrated strong correlations between subjective cough measurements, particularly the cough symptom score and Leicester Cough Questionnaire (r = -0.86; p < 0.001). Mechanical percussion induced a true cough reflex in 23/27 (85%) IPF subjects, but only 5/30 (17%) controls (p < 0.001). More patients with IPF reached the two-cough response at a lower frequency (20 Hz) posteriorly than at other positions. Highest mean cough totals were seen with stimulation at or above 40 Hz. Mechanical stimulation had no effect on respiratory rate but increased tidal volume in four (50%) subjects with IPF, particularly at higher frequencies. It was associated with increased urge to cough followed by a true cough reflex.ConclusionsThis study demonstrates that patients with IPF show enhanced cough reflex sensitivity to mechanical stimulation of the chest wall whilst normal individuals show little or no response. The observation that low frequency stimulation over the lung base, where fibrosis is most extensive, induces cough in more patients than at other sites supports the hypothesis that lung distortion contributes to the pathogenesis of cough in IPF.

Highlights

  • Patients with idiopathic pulmonary fibrosis (IPF) frequently develop a dry, irritating cough which often proves refractory to anti-tussive therapies

  • The mechanisms which cause cough in IPF are unknown but several theories have been proposed [3]. These include modulation of nerves in larger airways by neurotrophins generated within diseased lung parenchyma, mechanical lung distortion from fibrosis altering the activation of cough receptors and gastro-oesophageal reflux disease

  • Subjective measures of cough Compared with controls, IPF patients had significantly greater median cough symptom scores than control subjects as assessed by visual analogue scale (VAS) (38 [15-60] v 0 [0-4.5]; p < 0.001) and CSS (4 [2,3,4,5,6] v 0 [0-0]; p < 0.0001) and lower

Read more

Summary

Introduction

Patients with idiopathic pulmonary fibrosis (IPF) frequently develop a dry, irritating cough which often proves refractory to anti-tussive therapies. Patients typically present with progressive breathlessness but the majority develop an irritating cough during the course of the disease [1,2] This cough is typically dry and proves resistant to conventional anti-tussive therapies [2]. The mechanisms which cause cough in IPF are unknown but several theories have been proposed [3] These include modulation of nerves in larger airways by neurotrophins generated within diseased lung parenchyma, mechanical lung distortion from fibrosis altering the activation of cough receptors and gastro-oesophageal reflux disease (GORD), which is known to be present in approximately 80% of patients with IPF [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call