Abstract

Chymase is a chymotrypsin-like serine protease predominantly produced by mast cells. In this study, human cutaneous and gingival keratinocytes, ovary surface epithelia, and a porcine epithelial cell line were assayed by homology-based cloning, and the amplified DNA fragment was identified as a chymase. In vitro, chymase could not be induced by serum or cytokine treatment alone. Chymase was activated 3-fold within 60 min in basal media by scratch wounding cultured monolayers and further potentiated over 10-fold at 18 h by additional serum and cytokine treatment. Chymase activity was cell-associated and found to peak within 24 h of wounding and then steadily decreased as cultures healed, reaching baseline levels before confluence was reestablished. Affinity column purified enzyme effectively degraded fibronectin and was found by Western blot analysis using a human chymase antibody to be of about 30 kDa. Immunostaining revealed chymase activation at the wound edge colocalizing with reactive oxygen species generation. Specifically, chymase activation was attenuated by inhibition of nitric oxide, superoxide, and peroxynitrite. Exogenous peroxynitrite but not hydrogen peroxide also resulted in chymase activation in unwounded monolayers. Disruption of cytoskeletal stress fibers by cytochalasin D attenuated both wound-activated chymase and reactive oxygen species generation. Chymase inhibitor chymostatin reduced the loss of cell-cell contacts and the onset of porcine and human skin epithelial cell migration at the wound edge. This shows that an epithelial chymase is rapidly activated by a ligand-independent mechanism following mechanical stress via cytoskeletal and reactive oxygen species signaling and is associated with the onset of epithelial cell migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.