Abstract
The tensile strength, bending strength, water vapor diffusion resistance factor, gas permeability, thermal conductivity, specific heat capacity, and linear thermal expansion coefficient of a cement-based composite with hybrid PVA-fiber reinforcement are determined as functions of thermal pre-treatment, the loading temperatures being 600 °C, 800 °C, and 1000 °C. The experimental results show that the most important changes in all studied parameters occur between the unloaded state and the loading temperature of 600 °C and then between 800 °C and 1000 °C. Although seemingly high, these changes are still small as compared to many other cement-based composites. The positive effect of using PVA fibers for the high-temperature behavior of the studied composite can be seen mainly in their ability to prevent thermal spalling which is a serious deterioration effect for cement-based composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.