Abstract

The stiffness of bacteria prevents cells from bursting due to the large osmotic pressure across the cell wall. Many successful antibiotic chemotherapies target elements that alter mechanical properties of bacteria, and yet a global view of the biochemistry underlying the regulation of bacterial cell stiffness is still emerging. This connection is particularly interesting in opportunistic human pathogens such as Pseudomonas aeruginosa that have a large (80%) proportion of genes of unknown function and low susceptibility to different families of antibiotics, including beta-lactams, aminoglycosides, and quinolones. We used a high-throughput technique to study a library of 5,790 loss-of-function mutants covering ~80% of the nonessential genes and correlated P.aeruginosa individual genes with cell stiffness. We identified 42 genes coding for proteins with diverse functions that, when deleted individually, decreased cell stiffness by >20%. This approach enabled us to construct a "mechanical genome" for P.aeruginosa d-Alanine dehydrogenase (DadA) is an enzyme that converts d-Ala to pyruvate that was included among the hits; when DadA was deleted, cell stiffness decreased by 18% (using multiple assays to measure mechanics). An increase in the concentration of d-Ala in cells downregulated the expression of genes in peptidoglycan (PG) biosynthesis, including the peptidoglycan-cross-linking transpeptidase genes ponA and dacC Consistent with this observation, ultraperformance liquid chromatography-mass spectrometry analysis of murein from P.aeruginosa cells revealed that dadA deletion mutants contained PG with reduced cross-linking and altered composition compared to wild-type cells.IMPORTANCE The mechanical properties of bacteria are important for protecting cells against physical stress. The cell wall is the best-characterized cellular element contributing to bacterial cell mechanics; however, the biochemistry underlying its regulation and assembly is still not completely understood. Using a unique high-throughput biophysical assay, we identified genes coding proteins that modulate cell stiffness in the opportunistic human pathogen Pseudomonas aeruginosa This approach enabled us to discover proteins with roles in a diverse range of biochemical pathways that influence the stiffness of P.aeruginosa cells. We demonstrate that d-Ala-a component of the peptidoglycan-is tightly regulated in cells and that its accumulation reduces expression of machinery that cross-links this material and decreases cell stiffness. This research demonstrates that there is much to learn about mechanical regulation in bacteria, and these studies revealed new nonessential P.aeruginosa targets that may enhance antibacterial chemotherapies or lead to new approaches.

Highlights

  • The stiffness of bacteria prevents cells from bursting due to the large osmotic pressure across the cell wall

  • We screened a nonredundant transposon mutant library of strains of P. aeruginosa PA14 consisting of 5,790 clones covering ~80% of the nonessential PA14 open reading frames (ORFs) to identify mutants with altered cell stiffness [44]

  • We measured the growth of cells of each mutant strain against that of wild-type P. aeruginosa PA14 in liquid lysogeny broth (LB) nutrient media and encapsulated in 1% agarose gels infused with LB

Read more

Summary

Introduction

The stiffness of bacteria prevents cells from bursting due to the large osmotic pressure across the cell wall. We supplemented the media with L-Ala (25 mM) and measured the MIC of DCS against cells of the wild-type strain and the dadA::Tn mutant.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.