Abstract

This paper focuses on detecting the static eccentricity and bearing faults of a permanent magnet synchronous motor (PMSM) using probability distributions based on equal width discretization (EWD) and a multilayer perceptron neural network (MLPNN) model. In order to achieve this, the PMSM stator current values were measured in the cases of healthy, static eccentricity, and bearing faults for the conditions of three speeds and five loads. The data was discretized into several ranges through the EWD method, the probability distributions were computed according to the number of current values belonging to each range, and these distributions were then used as inputs to the MLPNN model. We conducted eighteen experiments to evaluate the performance of the proposed model in the detection of faults. The proposed method was very successful in full load and high speed for some experiments. As a result, we showed that the proposed model resulted in a satisfactory classification of accuracy rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.