Abstract

AbstractMechanical durability is one of the main obstacles of flexible organic electronic devices. In this work, the fatigue behavior of flexible field‐effect transistors based on a diketopyrrolo‐pyrrole‐dithienylthieno[3,2‐b]thiophene polymer is reported. An especially for that purpose designed bending setup allows to perform precise multiple deformation cycles of the transistor channel area while monitoring the device behavior. The transistors show high operational stability upon 100 bending cycles at a radius of 500 µm. Bending at smaller radius of 100 µm leaves the functionality of the parylene dielectric intact but induces serious mechanical fractures in the semiconducting film. Despite macroscopic defects, the transistors still reveal good reliability including high charge carrier mobility, due to presence of sufficient pathways for the charge carrier transport and to a low gate leakage. It is also observed that thinner polymer films are more sensitive to the deformation‐induced defects leading to a larger decrease in device performance, especially during the initial bending cycles. In thicker DPP‐DTT films, the crack propagation less affects the semiconductor/dielectric interface, at which the main charge carrier transport take place, resulting in a more stable device operation. Therefore, the work provides fundamental understanding of the fatigue behavior of flexible transistors based on semiconducting polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.