Abstract
The properties, generation, and dissipation mechanisms of acoustic, gravity and Alfven waves are described, whose restoring forces are pressure, buoyancy, and magnetic tension, respectively. For acoustic waves, generation by turbulent convective motions and by the Eddington Valve thermal overstability is discussed, considering the 'five-minute' oscillation; dissipation is possible either by radiation or shocks. Generation of gravity waves by penetrative convective motions and by shear arising from supergranule motions is reviewed, and dissipation due to wave breaking, interaction with the mean horizontal fluid flow, and very severe radiative damping is considered. Attention is given to Alfven wave generation by convective motions and thermal overstability, and to dissipation by mode coupling, wave decay, current dissipation, and particle collisions producing Joule or viscous heating.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.