Abstract

Ultralow dissipation plays an important role in sensing applications and exploring macroscopic quantum phenomena using micro-and nano-mechanical systems. We report a diamagnetic-levitated micro-mechanical oscillator operating at a low temperature of 3K with measured dissipation as low as 0.59 $\mu$Hz and a quality factor as high as $2 \times 10^7$. To the best of our knowledge the achieved dissipation is the lowest in micro- and nano-mechanical systems to date, orders of magnitude improvement over the reported state-of-the-art systems based on different principles. The cryogenic diamagnetic-levitated oscillator described here is applicable to a wide range of mass, making it a good candidate for measuring both force and acceleration with ultra-high sensitivity. By virtue of the naturally existing strong magnetic gradient, this system has great potential in quantum spin mechanics study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.