Abstract
This paper presents a mechanical design of biomimetic fish robot using the Lightweight Piezo-Composite Actuator (LIPCA). We have designed a mechanism for converting actuation of the LIPCA into caudal fin movement. The linkage mechanism consists of rack-pinion and four-bar linkage systems. Two kinds of caudal fins are fabricated such that the shapes resemble subcarangiform and ostraciiform caudal fin shape, respectively, and then attached to the linkage system. The swimming test using 300 Vpp input with 1 Hz to 3 Hz frequency was conducted to investigate the effect of tail beat frequency and shape of caudal fin on the swimming speed. The maximum swimming speed was reached when the device was operated at its natural swimming frequency. At the natural swimming frequency of 1.016 Hz, maximum swimming speeds were 1.267 cm/s and 1.041 cm/s for ostraciiform and subcarangiform caudal fin, respectively. The Strouhal numbers, which are a measure of thrust efficiency, were also calculated in order to examine thrust performance of the present biomimetic fish robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.