Abstract

When a needle is inserted into soft tissue, interaction forces are developed at the needle tip and along the needle shaft. The needle tip force is due to cutting of the tissue, and the force along the needle shaft is due to friction between needle and tissue. In this study, the friction force is determined for needles inserted into a gelatine phantom at insertion velocities of 10 mm/s and 20 mm/s. The friction force is found to be dependent on the insertion velocity. The needle tip force is calculated using the friction and insertion force, and is used as input for a mechanics-based model which predicts the amount of needle deflection. In the model, the needle is considered to be a cantilever beam supported by springs which have needle-tissue interaction stiffness (K <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</inf> ). The value of the interaction stiffness is evaluated by comparing results from experiments and simulation. A mechanical needle insertion device is used to insert needles. Needle deflection during insertion is determined using a needle tip tracking algorithm. Results of this study provide insight into the mechanics of needle-tissue interaction, and can be used in studies for robotically steering needles into soft tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.