Abstract

In this paper, mechanical design, dynamic modeling, construction and Fuzzy computed torque control of a lab prototype of lower extremity exoskeleton robot with a new structure in the form of three-wheeled Mobile robot is presented. One of the most important applications of next generation of lower extremity exoskeleton robot is usability as smart vehicle. In order to autonomously moving of this robot which is the foundation of smart vehicle, a fuzzy Computed torque controller is used in order to follow the predefined specified trajectory. Another important feature of this new structure is the ability to reshape the structure in order to increase the acceleration of the robot at the time of start. Moreover, the reshaping in structure leads to decrease Rollover tendency while turning and increasing the stability of the robot. Mechanical design is done using SOLIDWORKS software and construction the lab prototype of the robot is done using new fabrication methods such as wire cut and laser cutting and controller simulation is done using MATLAB Software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.