Abstract

A new monochromator is designed to develop a high performance soft X-ray microscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF). But owing to its high resolving power and high accurate spectrum output, there exist many technical difficulties. In the paper presented, as two primary design targets for the monochromator, theoretical energy resolution and photon flux of the beamline are calculated. For wavelength scanning mechanism, primary factors affecting the rotary angle errors are presented, and the measuring results are 0.15'' and 0.17'' for plane mirror and plane grating, which means that it is possible to provide sufficient scanning precision to specific wavelength. For plane grating switching mechanism, the repeatabilities of roll, yaw and pitch angles are 0.08'', 0.12'' and 0.05'', which can guarantee the high accurate switch of the plane grating effectively. After debugging, the repeatability of light spot drift reaches to 0.7'', which further improves the performance of the monochromator. The commissioning results show that the energy resolving power is higher than 10000 at Ar L-edge, the photon flux is higher than 1 × 108 photons/sec/200 mA, and the spatial resolution is better than 30 nm, demonstrating that the monochromator performs very well and reaches theoretical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call