Abstract

Transmembrane transport is essential and plays critical roles for molecule exchange for cell survival. Methods capable of mimicking and regulating transmembrane transport have transformed the ability to create biosensors, separation membranes, and drug carriers. However, artificial channels have been largely restricted by their complicated chemical fabrication and inefficiency to dynamically manipulate the transport process. Here, a novel approach to regulate transmembrane transport is described by simply adjusting the mechanical deformation of liposomal bilayers which are covalently embedded in a crosslinked hydrogel network. This new approach is able to dynamically control transmembrane transport by stretching and loosening. The transmembrane diffusion of molecules can be switched on and off, and precisely tuned by varying strain. A potential of this method to programmably regulate cell growth is demonstrated by tuning external mechanical force. Given its unique characteristics, this method allows the development of innovative systems for controlled transmembrane transport of molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.