Abstract

In recent years, flexible continuum robots have been substantially developed. Absolute nodal coordinates formulation (ANCF) gives a feasible path for simulating the behavior of flexible robots. However, the model of finger-shaped robots is often regarded as a cylinder and characterized by a beam element. Obviously, this is short of characterizing the geometrical feature of fingers in detail, especially under bending conditions. Additionally, for the lower-order plate element, it is hard to characterize the bending behavior of the flexible finger due to fewer nodes; a higher-order plate element often requires an extremely long computing time. In this work, an improved ANCF lower-order plate element is used to increase the accuracy of the Yeoh model and characterize the geometrical structure of silicone rubber fingers, taking into particular consideration the effect of volume locks and multi-body system constraints. Since it is a kind of lower-order plate element, essentially, the computing time is nearly the same as that of conventional lower-order plate elements. The validity of this model was verified by comparing it with the results of the published reference. The flexible finger, manufactured using silicone rubber, is characterized by the novel ANCF lower-order plate element, whereby its mechanical deformation and bending behavior are simulated both efficiently and accurately. Compared to the ANCF beam element, conventional lower-order plate element, and higher-order plate element, the novel plate element in this paper characterizes the external contour of the finger better, reflects bending behavior more realistically, and converges in less computing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.