Abstract

Polyelectrolyte gels can generate electric potentials under mechanical deformation. While the underlying mechanism of such a response is often attributed to changes in counterion-condensation levels or alterations in the ionic conditions in the pervaded volume of the hydrogel, the exact molecular origins are largely unknown. By using all-atom molecular dynamics simulations of a polyacrylic acid hydrogel in explicit water as a model system, we simulate the uniaxial compression and uniaxial stretching of weakly to highly swollen (i.e., between 60-90% solvent content) hydrogel networks and calculate the microscopic condensation levels of counterions around the hydrogel chains. The counterion condensation under deformation is highly non-monotonic. Ionic condensation around the constituting chains of the deformed hydrogel tends to increase as the chains are stretched. This increase reaches a maximum and decreases as the chains are strongly stretched. The condensation around the collapsed chains of the hydrogel is weakly affected by the deformation. As a result, both compressing and stretching the model hydrogel lead to an overall increase in the counterion condensation. The effect vanishes for weakly swollen hydrogels, for which most ions are already condensed. The simulations with single, stretched polyelectrolyte chains show a qualitatively similar response, suggesting the effect of chain elongation on the ionic distribution throughout the hydrogel. Notably, this deformation-induced counterion condensation phenomenon does not occur in a polyelectrolyte solution at its critical concentration, indicating the role of hydrogel topology constraining the chain ends. Our results indicate that counterion condensation in a deforming polyelectrolyte hydrogel can be highly heterogeneous and exhibit a rich behaviour of electrostatic responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.