Abstract

Abstract Three reinforcement ratios (0, 50, and 100%) of carbon fiber reinforced plastics (CFRP) were selected to improve the mechanical properties of recycled brick concrete in this study. Utilizing axial compression test, X-ray diffractometer analysis, the evolution of parameters such as compressive strength, peak stress, and elastic modulus of reclaimed concrete were analyzed. The reclaimed brick concrete’ stress distribution and damage mechanism were revealed. The aggregate internal failure and CFRP reinforcement effect mechanism are discussed. The finite element model of red brick concrete reinforced by CFRP under uniaxial compression is established. The constitutive model for CFRP-reinforced recycled brick concrete is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call