Abstract

Hemodynamic findings during ventricular fibrillation (VF) and closed-chest cardiopulmonary resuscitation (CPR) are similar to those described during VF and vigorous coughing. Interventions during CPR that mimic the physiologic events of coughing (high intrathoracic pressure and high intraabdominal pressure) improve perfusion during VF and CPR. An external circulatory assist apparatus was devised to emulate cough physiology, i.e., simultaneous pulsatile increases in intrathoracic pressure (pneumatic vest), intraabdominal pressure (abdominal binder) and airway pressure (high-pressure airway inflation). In this study, vest/binder CPR was compared with conventional CPR during 30 minutes of VF and artificial support in 18 randomized dogs. Defibrillation and long-term (more than 24 hours) survival were chosen as end points. During VF and artificial support, aortic and right atrial (RA) pressures, the instantaneous aortic-RA pressure difference (coronary perfusion pressure) and blood gas levels were measured. After 30 minutes of VF and administration of 1 mg of epinephrine, countershock was attempted. Systolic aortic and RA pressures, mean aortic-RA pressure difference and blood gas levels were not significantly different between dogs that were successfully resuscitated and those that were not. However, peak diastolic coronary perfusion pressure (peak diastolic aortic-RA pressure) for survivors averaged 23 ± 6 mm Hg, but only 6 ± 10 mm Hg for nonsurvivors (p < 0.001). A peak diastolic coronary perfusion pressure 16 mm Hg or greater had a positive and negative predictive value for a successful outcome of 1.00. Only 1 of 9 conventional CPR dogs survived 24 hours; 7 of 9 dogs supported with the vest/binder device were alive and neurologically normal at 24 hours (p = 0.007). Thus resuscitation techniques that exploit the CPR “thoracic pump” can sustain systemic perfusion during VF, and diastolic coronary perfusion pressure is a determinant of CPR/countershock outcome and is favorably manipulated by mechanical means.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call