Abstract

Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call