Abstract
Aberrant remodeling of the asthmatic airway is not well understood but is thought to be attributable in part to mechanical compression of airway epithelial cells. Here, we examine compression-induced expression and secretion of the extracellular matrix protein tenascin C (TNC) from well-differentiated primary human bronchial epithelial (HBE) cells grown in an air–liquid interface culture. We measured TNC mRNA expression using RT-qPCR and secreted TNC protein using Western blotting and ELISA. To determine intracellular signaling pathways, we used specific inhibitors for either ERK or TGF-β receptor, and to assess the release of extracellular vesicles (EVs) we used a commercially available kit and Western blotting. At baseline, secreted TNC protein was significantly higher in asthmatic compared to non-asthmatic cells. In response to mechanical compression, both TNC mRNA expression and secreted TNC protein was significantly increased in both non-asthmatic and asthmatic cells. TNC production depended on both the ERK and TGF-β receptor pathways. Moreover, mechanically compressed HBE cells released EVs that contain TNC. These data reveal a novel mechanism by which mechanical compression, as is caused by bronchospasm, is sufficient to induce the production of ECM protein in the airway and potentially contribute to airway remodeling.
Highlights
A hallmark of asthma is aberrant airway remodeling
Mechanical compression applied to well-differentiated human bronchial epithelial (HBE) cells activates multiple signaling cascades, including epidermal growth factor receptor (EGFR), protein kinase C (PKC), extracellular signal-regulated kinase (ERK), and transforming growth factor-β (TGF-β) receptor, all of which are linked to a variety of pathophysiologic features of airway remodeling and asthma [8,9,10,11,12,13,14,15,16]
We focus on the role of mechanical compression of human bronchial epithelial cells in extracellular matrix (ECM) production, with a particular focus on tenascin C (TNC)
Summary
A hallmark of asthma is aberrant airway remodeling. While the origin of airway remodeling is not well understood, a growing body of evidence suggests that airway epithelial cells are a causal factor [1,2,3,4]. Mechanical compression applied to well-differentiated human bronchial epithelial (HBE) cells activates multiple signaling cascades, including epidermal growth factor receptor (EGFR), protein kinase C (PKC), extracellular signal-regulated kinase (ERK), and transforming growth factor-β (TGF-β) receptor, all of which are linked to a variety of pathophysiologic features of airway remodeling and asthma [8,9,10,11,12,13,14,15,16]. In HBE cells, TNC expression is increased by rhinovirus infection, a risk factor for asthma, and type 2 cytokines including IL-4 and IL-13, critical mediators of asthma development [39,40,41]. In our own studies using HBE cells, TNC expression and secretion are increased by mechanical compression, which mimics bronchospasm in asthma [42]. Further, that compressioninduced TNC expression and secretion in HBE cells are regulated by ERK and TGF-β receptor pathways
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.